Stimulated emission from CsPbBr3 quantum dot nanoglass
نویسندگان
چکیده
منابع مشابه
Voltage-Controlled Entanglement between Quantum- Dot Molecule and its Spontaneous Emission Fields via Quantum Entropy
The time evolution of the quantum entropy in a coherently driven threelevel quantum dot (QD) molecule is investigated. The entanglement of quantum dot molecule and its spontaneous emission field is coherently controlled by the gat voltage and the intensity of applied field. It is shown that the degree of entanglement between a three-level quantum dot molecule and its spontaneous emission fields...
متن کاملStimulated emission from single quantum dipoles
Whereas the basic features of stimulated emission are easily seen to hold true for ensembles of dipoles, the same is not always true for a single dipole system. For example, symmetry requires that well localized, bound dipoles emit a dipole field which is isotropic in the plane defined by the dipole vector. Indeed, for this case, nothing in the interaction between the dipole and the field conta...
متن کاملPhoton emission from a cavity-coupled double quantum dot.
We study a voltage biased InAs double quantum dot (DQD) that is coupled to a superconducting transmission line resonator. Inelastic tunneling in the DQD is mediated by electron phonon coupling and coupling to the cavity mode. We show that electronic transport through the DQD leads to photon emission from the cavity at a rate of 10 MHz. With a small cavity drive field, we observe a gain of up to...
متن کاملQuantum dot emission from site-controlled InGaN/GaN micropyramid arrays
InxGa1−xN quantum dots have been fabricated by the selective growth of GaN micropyramid arrays topped with InGaN/GaN quantum wells. The spatially, spectrally, and time-resolved emission properties of these structures were measured using cathodoluminescence hyperspectral imaging and low-temperature microphotoluminescence spectroscopy. The presence of InGaN quantum dots was confirmed directly by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optical Materials Express
سال: 2019
ISSN: 2159-3930
DOI: 10.1364/ome.9.003390